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Abstract 

In this paper we address the basic problem of computing minimal finite free resolutions 
of homogeneous submodules of graded free modules over polynomial rings. We develop a 
strategy, which keeps the resolution minimal at every step. Among the relevant bene- 
fits is a marked saving of time, as the first reported experiments in G&i14 show. The algo- 
rithm has been optimized using a variety of techniques, such as minimizing the number of 
critical pairs and employing an “ad hoc” Hilbert-driven strategy. The algorithm can also take 
advantage of various a priori pieces of information, such as the knowledge of the Castelnuovo 
regularity. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 13P10, 13D02, 13D40 

1. Introduction 

In this paper we address the basic problem of computing minimal finite free reso- 

lutions (MFFR) of homogeneous submodules of graded free modules over polynomial 

rings. The theory of finite free resolutions has a long history; it goes back to the 

fundamental paper by Hilbert [l l] and is a cornerstone in Algebraic Geometry and 

Commutative Algebra, since many geometric invariants can be calculated from such 

resolutions. Despite their outstanding importance, it was only in the 1980s that the first 

attempt to actually compute them was tried. For instance [14] considered some com- 

putational problems involved, but only for very special ideals. Then in [ 131 the authors 

discussed a new computational approach to the problem, which worked in general. The 

first implementations of the MFFR-algorithms, done in Macaulay 3.0 [3], and CKu4 

1.5 [9] were unsatisfactory for various reasons. Recently we have seen new ideas 
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introduced to deal with this problem, which lead to more efficient implementations (see 

[8])_ Other researchers are working on the subject, in particular we are aware of some 

work in progress by La Scala [12], whose algorithm has been recently implemented in 

Macaulay 2, and by Caboara-Traverso [4]. 

Our idea can be briefly described by saying that our MFFR algorithm features a 

strategy, which has a great deal of flexibility and keeps the minimality at every step. 

More specificaily, our algorithm is a combination of the following ingredients: 
_ the use of a minimal set of critical pairs, as explained in Section 3; 
_ the use of left-induced term-orders (see Section 4), as suggested many years ago by 

Schreyer ([ 151); 
_ the use of Hilbert functions to discard Type So critical pairs (see Section 5); 
_ a “top first” strategy, which first computes the top part of every computational cell, 

i.e., the part which manages the “critical pairs” and then the bottom part, i.e., the 

part which manages the “incoming vectors”; 
_ the possibility of placing a priori bounds in the “resolution matrix”, when some 

extra information, such as the Castelnuovo regularity, is known. 

The default uses a “reading pattern strategy”, i.e., a strategy which computes in in- 

creasing degree and from left to right. However the flexibility is such that completely 

different strategies can be used so that the algorithm may benefit from other sources 

of knowledge. 

The paper is structured in the following way. After having discussed some more or 

less well known facts in Section 2, we address the problem of minimizing the set of the 

critical pairs (see Section 3). Then we propose an algorithm to compute a minimal set 

of syzygies of a graded module (see Section 4). The algorithm embodies a subroutine 

which uses Hilbert-Poincare series as a tool for discarding useless critical pairs (see 

Section 5), and one should be aware of the fact that useless critical pairs are not the 

pairs which reduce to zero in Buchberger’s algorithm, but pairs which, by reducing to 

zero, produce a syzygy, which reduces to zero. Then Section 6 is devoted to collecting 

all the ideas coming from the previous parts and describing how to compute in the 

“computational zone” of the so called “resolution matrix”. All the algorithms described 

in the paper were implemented in CocaAL, the programming language of CXoA, before 

being coded in the kernel of cocac\ 3 [5]. A set of examples, almost all of which come 

from specific problems in Algebraic Geometry, is the basis for our table of timings. It 

is described in Section 7, and shows the excellent behavior of our algo~thm, which, 

for instance, performs with many orders of magnitude better than the old CbCW. 

2. Some preparatory results 

Let us start by considering the following situation. Let R := k [Xl,. . . ,X,] be the 

polynomial ring over a field, graded over N by deg(X;) > 0 for i = 1,. . , , n and let L 

denote a finitely generated graded free R-module. Then L 2 @FZ, R(-ai), where the 

ai’s are the degrees of a set of homogeneous generators of L. 
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Let g be a term-order on the set of power products of L, i.e., elements of the form 

(0,. . .) 0, t,O,. . .) 0), where t is a power product in R. 

If M is a submodule of L, we denote by LT,(M) the leading term module of M, 

i.e., the submodule of L generated by {LT,(m) 1 m ~M,rn #O}. 

If M is an N-graded submodule of L, then M = edEN Md and the elements of & 

are called homogeneous elements of degree d of M; we make the following: 

Convention 1. Homogeneous generators of a graded module are written in nondecreas- 

ing order with respect to their degree. 

In practice it is clear that the generators, however given, can be rearranged to meet 

the requirements of Convention 1. 

Suppose now that we want to compute a Grobner basis of M by means of 

Buchberger’s algorithm. 

Definition 1. A strategy which computes a Grobner basis in nondecreasing degree is 

called a degree-compatible strategy. A strategy which always makes full reduction, i.e., 

it stops the reduction of every element when no power product in the support can be 

reduced, is called a fully-reductive strategy. 

Convention 2. We assume that we always use degree-compatible fully reductive strate- 

gies. 

While the use of a degree-compatible strategy is essential in the following, the use 

of a fully reductive strategy is only optional. 

Definition 2. We use the expression “d-truncated Griibner basis” of A4 to mean the 

subset of all the elements of a Grobner basis of M having degree not greater than d 

and we denote it by Gsd(M). We call M <d the module generated by the elements of _ 
M of degree not greater than d. 

It is very well known that if M is a graded module and a degree-compatible strategy 

is used to compute a Griibner basis of M, then, after passing a degree d, a d-truncated 

Grobner basis of A4 is already computed. 

Lemma 3. Let M be a graded submodule of a gradedfree module L and let G<d(M) 

be a d-truncated Grobner basis of M. Let {n,, . . . , n,} be homogeneous elements of 

L of degree d, such that the leading terms of the ni’s are 

(a) pairwise dtjherent; 

(b) not divided by any leading terms of the elements of Gld(M). 

Let M’:=M+(nl,..., n,). Then G<d(M)U{nl,...,n,} is a d-truncated Griibner busis _ 
of Ml. 

Proof. A simple analysis of the possible critical pairs leads to the conclusion. 0 
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Proposition 4. Let M,hP,n~,...,n, be as in Lemma 3; assume that A4 is minimally 

venerated by {m 1, . . . , m,.}. Then M’ is rnini~~al~~~ generated by {ml,. . . , m,} U 

{ni,...,n,). 

Proof. The only possibility against minimality is that there is a linear combination 
C aini + C bjmj = 0, with Q; E k for i = 1,. . . , s and some of the ai’s different from 
0. But then the leading term of m := x aini is the leading term of one of the ni’s, 
hence is not divided by any of the leading terms of elements of G<&‘iJ). At the same _ 
time tn can be written as - C bjmj, hence it reduces to 0 via G<d(M). This is a _ 
contradiction. El 

3. ~omputiug a minimal set of critical pairs 

Our next goal is to show that the results of the previous section can also be used 
to obtain a minimal set of critical pairs. 

Let (ml,..., m,} be a set of homogeneous elements of a graded free module ~50 2 

@:=, R(-ai) and let M:=(mr,. . .,m,.). If {e,,.. ., e,} denotes the canonical basis of 
La, then deg(ej) = aj. We recall that the power products of Lo are the elements of the 
form t+ei, where t=Xy’ a+ ..-Yp and we explicitly remark that deg(t.ei) = deg(t)+ai. 

Suppose we want to compute a Grobner basis of M with respect to a degree- 
compatible term-order 1~ on Lo. We have to run Buchberger’s algorithm, so we are 
interested in the so called critical pairs. 

We recall that two elements ni and nj of LO give rise to a critical pair if LT(ni) and 

LT(n, ) are of type s s el and t . el, with the same 1. We introduce new labels &i’s to 

indicate the position, so that the critical pair can be described by 

lcmts,t) F_ + 
---------I 

s 

We simply refer to 

lcm (s, t) 
- &j. 

t 

it as P(i,j) and we observe that its degree is deg(P(i,j)):= 
deg(lcm (s, t)) + deg(el). In this way we embody the critical pairs in a graded module, 
which we call A. 

Given a critical pair - a&i + b&j, of course LT(a . ni) = LT(b . nj ), so we need a 
convention to break the tie. 

Convention 3. Let i <j and P(i,j) := - asi + bei, we put 

LT(P(i,j)) := b&j. 

Corollary 5. With the above construction and co~venfion, we have a term-order on 
the R-module A generated by the critical pairs. 

To process the critical pair P(i,j) means to compute the normal form of -(lcm(s, t)/ 

s)ni + (lcm(s, t)/t)nj, where the normal form is taken with respect to the part of 
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the Griibner basis already computed. We observe that such a normal form is a ho- 
mogeneous element of degree deg(~(~,j)). We also observe that such normal forms 
depend on the order chosen to process the critical pairs. This suggest the 
following: 

Convention 4. We always use the following order on the critical pairs of a given 
degree: P(i, j) < P(h, k) if either j < k or j = k and i < h. 

For every new element nk added to the Grijbner basis, we need to add a new label &k, 
so that the new pairs P(i, k) can be written in the form - asi + b&k. This means that for 
every new element nk added to the Griibner basis, we upgrade the module containing 
the critical pairs and we obtain a new module &!k. We observe that J? = tfk J@k. This 
does not cause any problem to the algo~thm which computes a Grijbner basis of the 
critical pairs, since each computation among the currently given pairs keeps inside the 
module J#k. Therefore we can use the results of the previous section to produce a 
minimal set of generators of the critical pairs. As we have already noted, two elements 
of the critical pairs produce a critical pair (of critical pairs) only if they are of type 
P(i, k), P( j, k) (same k). 

Now we are ready to state the main result. 

Theorem 6. Let i, j,k be three indices, such that i <j < k. Let P(i, k) := - a Ei + ci Ek, 
P( j, k) := - bcj + cj Ek, P(i, j) := - A&i + Bei. There are three possibilities. 

(1) If ci 1 Cj then P( j, k) CLUB be deleted frum the mjn~rnal set of pairs. 
(2) If cj properly diuides ci then P(i,k) can be deleted from the minimal set of 

pairs. 

(3) No divisibility occurs. Then P(i, j) can be deleted from the minimal set of pairs 
tf and only tf gcd(a, b) = 1. 

Proof. In the first case we have P(i, k) < P(j,k). Let cj =d ’ ci. Then P(j, k) = 

d. P(i, k) + ‘x. P(i, j). Therefore not only P( j, k) can be deleted from the minimal 
set of pairs, but also it reduces to 0, hence it does not contribute to the Griibner basis 
of the pairs. 

in the second case let ci = e. cj we have P(i, k) = e ’ P( j, k) + a a P(i, j). We observe 

that deg(P(i, k)) > deg(P(j, k)) and P(i, k) reduces to 0, hence it can be deleted from 
the minimal set of pairs; moreover it does not contribute to the Griibner basis of the 
pairs. 

In the third case we let C := lcm(ci, cj) and we see that the critical pair associated 
to (P(i, k),P(j, k)) produces - (C/ci)asi + (C’/‘cj) b&j, which is therefore a multiple 
of P(i,j), i.e., ((C/c~)a&~ + (C/c~)b&~) = R’ (--A&i + B&j). If gcd(a,b)# 1, then the 
produced pair - (C/ci) a&i + (C/Cj) bzj is a strict multiple of P(i, j), hence it reduces to 
0 and does not contribute either to the minimal set of pairs or to their Griibner basis. 
If gcd(a, b) = 1, then the produced pair - (C/ci) asi + (C/cj) b&j is equal to P(i, j), 
hence the pair P(i, j) is taken out from the minimal set of pairs. i? 
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Remark 7. From the preceding theorem we derive a procedure, which we call 
New-Pairs(K) and which builds the new minimal pairs, when a new element is added 
to the Gr6bner basis, and removes the nonminimal ones from the pairs to be processed. 
If the new element is the Kth one, then the computational cost of New-Pairs(K) is 
E(K) divisibility and 0(K2) coprimality tests between power products. Both tests can 
be efficiently performed if the power products in the components of the critical pairs 
keep the information of their “square-free part”, as described in [2]. 

Remark 8. The Procedure New-Pairs(K) can be interpreted as an improved version 
of the Gebauer-Moller [7] criteria in the homogeneous case. 

4. Computing minimal syzygies 

Let {ml,..., m,} be a set of homogeneous elements of LO, with di := deg(mi), 

i= l,..., r; dl 5 ... < drr let M:=(mr ,..., m,), Li := $L=, R(-di) and {Q,..., E,} - 
the canonical basis of Li. Then M can be represented as the image of the map of 

graded free modules 

@:~!,i --+& where @(Ei)=?Hi; i=l,..,,r. 

We observe that, because of the chosen shifts, @ turns out to be a graded homomor- 

phism. 
Now we consider a term-order D on LO; it induces a Filtration on Lo. Classical results 

in the theory of associated graded objects to filtrations (see for instance [ 15, 14, 61) 
suggest the following. 

Definition 9. A term-order ‘G on Li is said to be induced by 5 and Qi if the following 
condition holds: for every power products s and t, then 

t . G! >T s * cj if LT,(tmi) >. LT@(s~,~). 

A term-order z on L1 is said to be the term-order left-induced by cr and @ if it is 

defined by 

t . E; >r s ’ Ej if 

either LT,(t~ni) >n LT,(smj) or LTc(tmi)= LTo(smj) and i > j. 

Convention 5. Henceforth we will use the term-order left-induced by o and @. 

Remark 10. The use of left-induced term-orders z was already suggested by Schreyer 
[ 151 in his Diploma thesis. It is certainly not an original ~on~bution of this paper; 
however we want to remark that it is a “natural” choice. Namely, it is the correct 
choice to make the morphism @ compatible with the Griibner filtrations induced on 
LO and Li by cf and 2, respectively. 
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Definition 11. With the above notations and conventions, minimal critical pairs are of 

two different types, namely: 

Type G if the corresponding normal form is different from zero, hence it yields a 

new element in the Grobner basis of M; 

Type S if the corresponding normal form is zero, hence it yields a syzygy of the 

given set of generators of M. 

It is well known (see for instance [l]) that Type S critical pairs yield generators of 

the module of syzygies of {ml,. . . , m,}, but we get more. 

Definition 12. Let M be minimally generated by {ml,. . ,m,}. Let a procedure be 

given which yields syzygies of the mi’s from the Type S critical pairs selected among 

a minimal set of critical pairs as described in Section 3 and processed in the order 

stated with Convention 4, while computing a Griibner basis of M; we denote by SC{ 

the set of the corresponding degree-d syzygies. Let Gd be a d-truncated Griibner basis 

of the module generated by Syz(M<(d-1)). Then a Type S critical pair can be of two 

different types, namely: 

Type &in if it yields a minimal generator for the module of syzygies; 

Type SO otherwise. 

If we apply the results of Section 2 to the above described situation, we get the 

following: 

Proposition 13. Let M be a graded submodule of a graded free module LO, assume 

that M is minimally generated by {ml,. .., m,}. Then the Type Smin critical pairs 
described in De$nition 12 yield a minimal set of generators of Syz(ml,...,m,). 

Proof. The proof follows from Proposition 4. 0 

Corollary 14. Let M be a graded submodule of a gradedfree module LO, assume that 

M is minimally generated by {ml,. . ,m,}. Then Proposition 13 yields an algorithm, 

which computes the minimal syzygies of the given minimal set of generators 

{ml,...,mr}. 

Corollary 15. Let M be a graded submodule of a graded free module LO, assume 
that M is generated by { ml,. . .,m,}. Then a combination of Propositions 4 and 13 

yields an algorithm, which we call MinSyz and which computes the minimal syzygies 
of a minimal subset of the given generators. 

Remark 16. This approach can be implemented by using a “horizontal” strategy, which 

does the computation degree by degree in both modules. The horizontal approach can 

be improved if we normalize a syzygy as soon as it is found. To make this remark effec- 

tive, we must “go from left to right” in the sense that we have to process the pairs of the 

syzygies in degree d before normalizing the new incoming syzygies in the same degree. 
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5. The use of the Hilbert functions 

In this section we show how to use information coming from numerical functions 
to possibly detect, hence discard, Type SO critical pairs. 

Definition 17. Let N be a graded submodule of a free graded module over &I,. . . ,x,J. 

We express the Hilbe~-Poincar~ series of N as 5, = & and we call (N) the 
“numerator” of N. We denote by {N<d) the numerator of the module generated by 
N<d and we denote by (N<d) - the numerator computed via a (d - 1 )-truncated Grobner 
basis of N<d. If P(1) is a series or a polynomial, we denote by c&(P) the coefficient 
of id in P(A). Finally we denote by #(Smin(N))d the number of Type &in critical pairs 
of degree d of N and by #(G(N))d the number of Type G critical pairs of degree d 
of N. 

When the algorithm MinSyz enters a degree d, it computes the d-truncated Griibner 
basis of Syz(M)<d and the d-truncated Grijbner basis of M. At that stage, a minimal 
set of generators of M of degree not greater than d - 1 is already computed, say 
mr,. . . , m, of degrees d, , . . . , d,. We denote by ,C the free graded module &R(-d,). 

Now it depends on the strategy whether one computes a d-truncated G-basis of Syz(M) 
first and then a d-truncated G-basis of M or vice versa. Our default is the first choice, 
as explained in Remark 16 and in the next section. 

Theorem 18. With the pree~d~ng rotation, the f~~~o~ing e~uaIities hold: 

(9 cf~({~<~}) = cf%@&d)-) + #(G(~))~; 
(ii) Cfd((Syz(M)<d))=cfd((SyztM)<d)-) + #G(Syz(M))d; 

(iii) Cfd((SYz(M)))=cfd((SYz(M),d)) + #(&nin(M))d; 

(iv) -Cfd((%@f)<d)-) - Cfd((M<d)-) 

= #G((sYZ(~))d f #tG(M )Id + #(~~i~(~))d. 

Proof. We consider the following sequences 

0 ---t (Syz(M))i + Li + (M<d)i + 0 

They are clearly exact for i = 0,. . . , d - 1. But we know that M<d is presented through 
a minimal set of generators, hence the syzygies of M in degree d do not tie elements 
of IV of degree d. Therefore also the dth sequence is exact and the additivity of the 
Hilbert-Poincare series implies that 

Cfi(&) - Cfi(YM_.,,) - Cfi(9syz(M)) =: 0, i = 0,. . . , d. 

But 

(PL - yM<,, - ~syzpf))=((Q -G&d) - CW@f)j)(~ +nA+..*) 

hence 

cfi((L)) -cf;((h4<:d)) - cfi((Syz(M)))=O, i=O,...,d. 
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By the very definition of L we know that cfd((L)) = 0. Therefore, to prove (iv) it 

suffices to prove (i), (ii) and (iii). Arguing as before, it suffices to prove the corre- 

sponding statements for the series instead of proving them for the numerators. Now 

the proof follows immediately from the definitions. 0 

Definition 19. We define 

Discrd(M):= - Cfd((Sy@‘f)<d)-) - Cfd((M<d)-1. 

From Theorem 18 we know that it is a nonnegative integer. 

The theorem allows to improve the algorithm MinSyz by using Discrd(M). Namely, 

when such a number becomes 0, all the remaining critical pairs of A4 in degree d must 

be of Type SO, hence they can be discarded. The tables at the end of the paper show 

the excellent behavior of this tool. 

6. Computing minimal free resolutions 

Now we address the problem of computing minimal free resolutions of graded sub- 

modules of free graded modules over polynomial rings. Of course a possible solution 

to this problem is to iterate the algorithm MinSyz, which computes a minimal set 

of syzygies. However, to improve the efficiency we have devised a “reading pattern” 

strategy. Let us explain what it is. 

We represent the resolution as a matrix, whose columns are the modules of syzygies 

(the rightmost is the starting module) and whose rows are the degrees. We call cell(i, d) 

the computational zone of the ith module of the syzygies in degree d and we partition 

each cell in the top part and the bottom part. The top part contains the minimal critical 

pairs and the bottom part the vectors. Before starting our computation we eliminate 

the cells, which are useless because of some extra knowledge, such as the Castelnuovo 

regularity. Then we start from the lowest degree and we proceed from left to right, 

computing first in the (i,d) cell, with lowest d and highest i. 

Suppose we have completed the whole top part of cell(i+l, d), i.e., we have pro- 

cessed all the critical pairs related to it. Then we enter ceZZ(i,d), where we find critical 

pairs in the top part and vectors in the bottom part. Some of the critical pairs (Type 
G) produce new elements in the Grobner basis of M. The others (Type S) produce 

syzygies, i.e., incoming vectors in the ceZZ(i+l, d). These vectors may reduce to 0 or 

produce new minimal generators of Syz(M). In the last case they possibly produce new 

critical pairs in the cells celZ(i+l, S), with 6 >d. Then ceZl(i + 1, d) is completely done 

and we enter cell(i - 1, d), if not already discarded because of some extra knowledge. 

As we have already pointed out, part of the Type So critical pairs are discarded by 

means of Hilbert functions. 
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7. Examples and timing 

We report the timing (in seconds) obtained with the examples described below. They 
have been computed with a Pentium 133 MHz with 32 MB of memory, running under 
Linux. The second column of Table 1 shows the performance of the algorithm itself. 
The third one, labeled HDriven, reports the performance when the use of the Hilbert 
functions was enabled; the last one, labeled Regularity, shows the timing when we 
allowed the a priori knowledge of the Castelnuovo regularity. The “equal signs” mean 
that in the corresponding cases, the algorithm itself plus the Hilbert functions took care 
of the regularity, so that there was no extra improvement. 

Examples 
______________-------__--_-~~~~~~~____---~~~~~~-______~~~~~~~~~~~~~~ 

-- Catalecticant 
Use R:. *=Z/(32003)[z[0..3,0..3,0..311; 
A:=Mat [ 

r.zc3,0,01, z[2,1,01, ~C~,O,~ll, 
Lzc2,1,01, zc1,2,01, 2c1,1,111, 
CzE2,0,11 I zc1,1,11, z~1,0,211, 
tYzE1,2,01, zco,3,01, zro,2,111, 
[2[1,1,11, zco,2,11, x[O,i,211, 
czc1,0,21, 2[0,1,21, 2[0,0,311 1; 

I:=Ideal(Minors(2,A)); 
0&+R(-9)+R27(-7)iR’os(-6)iR’89(-5)-R’89(-4)-+R ‘os(-3)+R27(-2) 

_________________----________~~~~~__-------~~~~~~~~~~~~_~~~~~-~----- 

-- 11 generic points in P-6 
Use R : := Z/(32003) [x[O. .Sll ; 
I := GenericPointsIdeal(l1,6); 

0-+R4(-8)--+R’8(-7)--+RS(-5)~R25(-6)---+R45(-4) @R(-5)---+~6(-3)--+R’7(-2) 

_________________----_-_------~~~~__------------_------~~~~~~~~~~-~~ 

-- 2x2 Minors of a generic 3x5 matrix 
Use R : := Z/(32003) CxCl. .3,1. -511 ; 
A := Mat[[x[I,Jl I J In 1. .51 I I In 1..31; 
I := Ideal(Minors(2,A)); 
0-R6(-10)--+R40(-9)-+R’05(-8)-R50(-6)~ R’2a(-7)-R’68(-5) @RSO(-6)--+ 

R”0(-4)-R’20(-3)-_R30(-2) 

-~-------____----~~~~~~~~~~__~~~~~_-------~~~~--_--____~~~~~~~~~___~ 

-- Cyclic 5 
Use R : : = Z/ (32003) [abcdef 1 ; 
I := Ideal(a + b + c + d + e, ab + bc + cd + de + ea, 
abc + bed + cde + dea + eab, abed f bcde + cdea + deab + eabc, 
abcde - f-5); 

O-R(-l5)~R(-1O)$R(-l1)~R(-l2)~R(--13)~R(~14)~R(--6)~R(-7)~R2(-8)~ 

R*(-9)@RZ(-lO)@R(-li)@R(-12) -R(-3) @R(-4) @R2(-5) @ R*(-6) @R2(-7) 63 

R(-8)@R(-9)+R(-l)@R(-2)@R(-3)@R(-4)@R(-5) 
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-- Five dense polys of deg 4 
Use R : : = Z/ (32003) [abed] ; 
I := Ideal([Randomized(DensePoly(4)) I I In 1..51); 

0-R20(-11)-R46(-10)-R’o(-8)~R20(-9)iRs(-4) 

-----------______________________________________________ 

-- Commute 3x3 
Use R: :=2/(32003) [x[l. .3,1. .3ly[l. .3,1. .311; 
A := Mat[ [ x[I,Jl I J In I..3 ] I I In I..3 1; 
B := Mat[ [ y[I,J] I J In 1..3 ] I I In 1..3 1; 
C := A*B-B*A; 
I := Ideal(Entries(C)); 

0--rR4(-9) @ R(-10)+R3*(-8)dR3(-6) @R58(-7)-R32(-5) @ R**(-6)---+R*(-3) $ 

R3’(-4)-R*(-2) 

-----------______________________________________________ 

-- Cyclic 6 
Use R ::= Z/ (32003) Cgabcdef 1 ; 
I := Ideal(Ideal(a + b + c + d + e + f, 
ab + bc + cd + de + ef + fa, 
abc + bed + cde + def + efa + fab, 
abed + bcde + cdef + defa + efab + fabc, 
abcde + bcdef + cdefa + defab + efabc + fabcd, 
g-6 + abcdef)); 

O---R2(~20)~R2(-14)~R’o(-19)~R’o(-l3)~R(-16)~R4(-17)$R’5(-18)i 

R(-1O)$R4(-l1)$R’6(-12)~R(-13)~R2(-14)~R3(-15)~R5(-16)~R9(-17)-R(-6)~ 

R(-7)~R2(-8)~R4(-9)~R6(-10)~R”(-ll)~R2(-12)~R2(-13)~R2(-14)$R(-15)~ 

R2(-l6)~R(-3)~R(-4)~R2(-5)$R2(-6)~R3(-7)$R3(-8)~R2(-9)~R3(-10)~ 

R(-~~)~R(-I)@R(-~)$R(-~)@R(-~)@R(-~)~BR(-~) 

-----------______________________________________________ _ 

-- Generic Entries 
Use R ::= Z/ (32003) [xyzt] ; 
M := 3; N := 4; P := NewMat(M,N); 
For I := 1 To M Do 

For J := 1 To N Do; PD,Jl := Randomized(DensePoly(2)); 
End ; 

End ; 
I := Ideal(Minors(2,P)); 

0+R’7(-8)+R48(-7)+R’6(-5) @ R32(-6)+R’8(-4) 

In Table 2 we show some statistical data. 

We observe that MP := number of minimal pairs, i.e., the pairs which survived after 

minimizing them; and GP := number of Griibner pairs, i.e., the pairs which produced 

Grobner (nonminimal) elements; MS := number of minimal Type S pairs, i.e., the pairs 

which produced syzygies. Of course MP = GP + MS; MS,i, :=Number of minimal 

Type Smin pairs, i.e., pairs which produced necessary minimal ith-syzygies for every i; 

MS0 :=Number of minimal Type SO pairs, i.e., pairs, which produced useless syzygies. 

Of course MS = MS,,, + ME+,; HKSo :=Number of H-Killed Type SO pairs, i.e., pairs 
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Table I 
Timing 

Name Normal HDriven Regularity 

Catalecticant 

11 points in P6 

2X20f3X5 

Cyctic 5 

5 Dense 

Commute 3 x 3 

Cyclic 6 

Generic entries 

5.59 s 
55.88 s 

6.84 s 
9.36 s 
9.01 s 
3.70 s 

351.54 s 
14.56 s 

5.31 s 

34.58 s 

1.57 s 

2.20 s 

7.49 s 

2.31 s 

134.89 s 

9.15 s 

-> - 

2.11 s 

=,z 

5.86 s 

Table 2 

Statistics 

Name MP 

Catalecticant 902 

I I points in P6 256 

2X2Of3X5 1350 
Cyclic 5 I82 

5 Dense 204 

Commute 3 x 3 376 

Cyclic 6 374 

Generic entries 185 

GP MS MS,,, 

III 791 616 

45 211 144 

I.52 1198 869 
41 I41 26 

52 152 96 

69 307 I91 

61 313 137 

39 146 113 

MSo HKSe HdSo 

175 165 IO 

67 62 5 

329 I81 148 
I15 67 48 

56 33 23 

116 56 60 

I76 82 94 

33 29 4 

killed by the use of the Hilbert functions, as described in Section 5; HdSo := Number 

of Hard-Type So pairs, i.e., useless pairs, which were not detected by the Hilbert 

functions. Of course MS0 = HKSCJ + HdSo. 
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